
1. Magnet to Model

The Ising Model is the next study along our trajectory to simulating and under-
standing the φ4

2 model. In this chapter we will explore how a physical system is
made tractable to simulation techniques, the algorithms designed to drive the dy-
namics, and the many statistical techniques used to extract the tantalizing physics
behind the bits.

1.1. Ferromagnetism and the Ising Model. In the previous chapter we intro-
duced the random-walk as a brief outline for the type of thinking involved in our
physical simulation work. The Ising Model is an expansion of the random-walk
with physics embedded in the definition. As our motivation for the random-walks,
we considered Charlie the Drunkard. We begin here with a material: the ferromag-
net. These are substances we are familiar with that exert macroscopic magnetic
force: iron, nickel, cobalt, molecules involving these elements, and others. A mag-
netic bar is all fun and games until it heats up.

A ferromagnet will lose its magnetism at a critical temperature Tc, above which
the thermal energy exceeds the interaction energy and the electrons lose their
orientation. To quantify the two phases of the model the mean magnetization is
used

(1) 〈M〉 =
1

N2

N2∑
i

si

the magnetization fully characterizes the phases and is used to find the phase
transition. For temperatures below Tc, 〈m〉 6= 0 and settles in to a value dependent
on T . The Ising model exhibits long range order of aligned spins. However, for
temperatures above Tc, 〈m〉 = 0 defining a phase totally disordered. The different
states can be seen in Figure 1 The duality of ordered vs disordered is created by
the magnetization make it the model’s order parameter. Conversely, the phase
at which the mean magnetization is 0 can be thought of as symmetric, whereas
nonzero mean magnetization values are asymmetric. The phase transition can also
be thought of as a point where symmetry is broken. An ordered state has broken
symmetry and a disordered state has spin symmetry.

Knowing at what temperature this phase transition occurs is important to know
if you are playing with your ferromagnet in extreme temperatures, but also to
acquire an accurate description of the model. How do we probe this question by
using a model similar to the random-walk?
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Figure 1. The evolution of macro state configurations for an Ising Model on
a 128x128 lattice: it begins as a maximally-ordered state for low temperatures
(a); a few anti-ordered spins appear (b); large domains form near the critical
temperature (c & d), and the system loses all order at high temperatures (e).
(f) is the inverse of (e) with no difference perceived by eye, a hallmark of a
randomly disordered state.

In the random-walk, the degree of freedom we were interested in was the step di-
rection. In the ferromagnet the only degree of freedom is the spin of the electron.
There are physical effects from the charged nucleus and the orbital angular mo-
mentum of the electron. These can be neglected in our model as they have little
effect on the phase transition. The physics we do have to preserve is the interaction
between electrons. With further simplification, here is what we have:

(1) N x N lattice

(2) Spin 1/2 at each site

(3) Interaction energy between neighboring electrons

(4) External magnetic field

(5) An external temperature

(6) Torus boundary conditions
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Boundary conditions are necessary to eliminate edge effects, resulting in a lat-
tice that is perfectly symmetrical. The Ising Model is simulated at a range of
temperatures. The dynamics of the system is driven by the Hamiltonian, defined
as

(2) H = −J
∑

i,j=<nn>

sisj −B
N∑
i,j

sij

where J is the interaction energy between nearest neighbors and B is a parameter
for an external magnetic field. In the following sections, we will consider the two-
dimensional Ising Model, setting J = 1 and B = 0. The positive value we have
set for J is the ferromagnetic interaction, resulting in an ordered state of aligned
spins. A negative value is antiferromagnetic, giving a state with nearest spins anti-
aligned. We choose a ferromagnetic interaction energy so we have a well ordered
state that is easily distinguishable because of all its aligned spins and thus a higher
magnetization

This is a comfortable starting point to begin our simulations because the Ising
Model in two dimensions has been explicitly solved for, providing a check for our
data. It also will provide an excellent cornerstone for our experimentation with
the φ4

2 model because it shares the same universality class, meaning the behavior
close to the phase transition of both models are equivalent.

1.2. Statistical Mechanical Descriptors. The genesis of a statistical-mechanical
analysis lies in the partition function

(3) Z =
∑
s

e−βEs , β =
1

kBT

where the sum is over all microstates of the system. This is the canonical partition
function, defined for a system kept at constant temperature, volume, and number
of particles, but allowed to exchange heat. Other partition functions allow for
additional changes, but we will be working with our Ising Model in the canonical
ensemble.

The partition function bears many fruit. Pertinent thermodynamic quantities
can be extracted from it along with a definition for the dynamics of the system.
The power of Z is obvious by the simplicity of the equations you can write for
the ensemble average energy, heat capacity, Helmholtz free energy, magnetization,
and susceptibility
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〈E〉 = −∂lnZ
∂β

(4)

Cv =
1

kBT 2

∂2lnZ

∂β2
(5)

A = −kBT lnZ(6)

M =
∂A

∂B
(7)

χ =
∂M

∂B
(8)

A more powerful use of the partition functions yields the probability of our system
existing as one configuration in a set of microstates. The expression

(9) Ps =
1

Z
e−βEs

will later guide our approach to experimenting with the Ising Model by Monte
Carlo simulation.

2. Explicit Solutions of the Ising Model

The one-, and two-dimensional Ising Model have both been explicitly solved for.
We will tour both solutions as one builds into the other and to juxtapose the
idealized approach of finding an explicit solution with the experimental Monte
Carlo method for messier problems. It will be seen that data from the Monte Carlo
simulations reproduce the explicit functions, thus providing a powerful method to
obtain behavior of systems that do not have accompanying explicit solutions

2.1. The Ising Model in One dimension. The Ising Model in a single dimen-
sion is simply a string of spins interacting with their two nearest neighbors. It
was first solved by Ising [7], hence gaining his name. We again have to deal with
the two endpoints by connecting them, resulting in the topology of a loop. The
Hamiltonian for the one-dimensional Ising Model is simply (2) reduced by one
dimension. Taking the coupling strength to be constant we have

(10) H = −J
N∑
i

sisi + 1−B
N∑
i

si

The partition function (3) is then
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(11) Z =
∑
s1

...
∑
sN

e−βH

where we sum over all possible configurations of spins si. To progress to a solution
[6] we resort to the transfer-matrix method, a reexpression of the Boltzmann factor
weighting. The transfer matrix P is defined with elements

(12) 〈s|P |s′〉 = e−β(Jss′+Bs)

where s and s′ go over the two possible spin values. P is then

(13) P =

(
eβ(J+B) eβ(−J+B)

eβ(−J−B) eβ(J−B)

)
We can now rewrite (11) as

Z =
∑
s1

...
∑
sN

〈s1|P |s2〉〈s2|P |s3〉...〈sN − 1|P |sN〉〈sN |P |s1〉

=
∑
s1

〈s1|PN |s1〉

= Tr(PN)(14)

Now we have an expression for the partition function that is tractable to solution.
We can calculate the trace in (14) by diagonalizing P . This is done by first finding
the eigenvalues of P by solving the characteristic equation

det(P − λI) = 0

which gives us

λ2 − λeβJcosh(βB) + 2sinh(2βJ) = 0 where

λ± = eβJ(cosh(βJ)±
√

sinh2(βB) + e−4βJ)(15)

That total expression for (14) can then be rewritten in terms of (15). We are
interested in finding the solution of the Ising Model in the thermodynamic limit
where N →∞. In this limit, λ+ dominates. In short



6

Tr(PN) = λN+ + λN−

Z = λN+ , as N →∞(16)

We can now utilize (5) and (6) to obtain an expression for the magnetization.

(17) M =
sinh(βB) + sinh(βB)cosh(βh)√

sinh2(βB)+e−4βJ

cosh(βB) +
√

sinh2(βB) + e−4βJ

We are interested in the possibility of the one-dimensional Ising model to exhibit a
phase transition and at what temperature it occurs. Remember, a phase transition
occurs when the Ising Model changes from a symmetric state, to a broken symme-
try state. The equation we find for the magnetization must reflect this transition.
There must be some critical temperature at which the magnetization goes from
nonzero to zero.

To look for this point, we turn off the external magnetic field B, as it is not an
intrinsic feature of our model. But at B = 0, the magnetization also vanishes as
cosh(βB) → 1 and sinh(βB) → 0. This is true for any value of β or J . We are
left with a boring model that does not feature a phase transition at any physical
temperature. There is no point to start our Monte Carlo simulations here, unless
a result of nothing excites you.

2.2. Solution for the Two Dimensional Ising Model. The solution to the
two-dimension model follows the methodology of the previous solution, until the
greatest eigenvalue of the transfer matrix is sought. The solution was first com-
pleted by Onsager[12] and will not be repeated here due to the lengthy calculation
of the eigenvalue. I will instead outline the differences in the procedure due to the
increase in dimensionality and restate the results. My summary will follow Kauf-
man’s [8] ”short and sweet” updated solution as presented by Haung [6].

We again begin with the Hamiltonian (2) which is now obviously summed over
two indices. The transfer matrix P is constructed by considering columns of spins,
instead of a singular spin. This results in a 2n x 2n matrix. The partition function
is again given by the trace, but here we are left with a difficult task. Finding the
largest eigenvalue of P requires many pages of calculation and manipulation of
operators. It involves defining a handful of operators, most of which are familiar
to the physicist: Pauli spin matrices, a related set of specific high-dimensional
gamma matrix, rotation operators, and a spin representative. Other operators
pop-up throughout the solution, but all are in terms of the gamma matrices.
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The solution begins by noting that the transfer matrix can be rewritten in terms
of three other matrices, which are then recast in terms of gamma matrices. P is
then diagonalized in a specific form through a head-banging procedure utilizing
the properties of the rotation matrix and the spin representative. It turns out that
the largest eigenvalue of the matrix is found in the n→∞ limit. Taking this limit
involves simplifying an ugly integral, but then we reach the explicit solutions in an
acceptable form by remembering that the largest eigenvalue is equivalent to the
partition function.

Onsager [12] finds the explicit form for the energy

(18)
U

N
= coth2β(1 +

2

π
k′′1K1)

and uses that to obtain the specific heat

(19)
C

NkB
=

2

π
(βcoth2β)2[2K1 − 2E1 − (1− k′′1)(

π

2
+ k′′1K1)]

where K1 and E1 are the elliptical integrals

K1 = K(k1) =

∫ π/2

0

(1− k2
1sin2φ)−1/2dφ(20a)

E1 = E(k1) =

∫ π/2

0

(1− k2
1sin2φ)1/2dφ(20b)

where the specific heat and the elliptical integrals are written in terms of

k1 = 2sinh2β/cosh22β

k′′1 = 2tanh22β − 1

A singularity in the specific heat occurs for β = 1
2
log(coth(π/8)) for which k1 = 1,

k′′1 = 0, K1 =∞, and E1 = 1. For these values the specific heat (19) becomes infi-
nite as K1 dominates and the energy (18) is continuous. The critical temperature
is easily calculated as TckB = 2.269.

To check that a phase transition does indeed occur at Tc, we turn to the explicit
order parameter. For temperatures above the critical temperature, the magneti-
zation [14] is indeed non-zero
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Figure 2. Absolute value of the magnetization vs temperature from Monte
Carlo runs of a 256x256 lattice. Onsager’s solution (red) abruptly ends at Tc.

(22) M = {1− [sinh(2βJ)]−4}
1
8

but vanishes for smaller temperatures. This can be seen in Figure ??. Ladies and
gentlemen, we have found our phase transition.

3. Simulating the Model

The simulation of the Ising model was written in C++ from scratch. I used
multiple sources [5, 9] to assist me in the course of programming and data analysis,
using them to check my data against. Simulations were ran with the objective
of obtaining a qualitative understanding of the two-dimensional Ising model to
provide a background for the φ4

2 model. I will first go over the theory of Monte
Carlo simulations, describe the algorithms used, and explain the data needed to
extract the physics. All data was plotted using Mathematica.

3.1. Markov Chains and Detailed Balance. A Markov process is a type of
dynamic where the probability of a state is only dependent on the state immedi-
ately preceding it. Consider the current state of the system Xtn as one element
in the set of all possible configuration of the system {Si}. The probability of the
system being in state Xtn as dictated by a Markov process [9] is written as

(23) P (Xtn) = P (Xtn = Sin|Xtn−1 = Sin−1)
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Figure 3. Time series plot of energy and magnetization. It takes about 100
Monte Carlo steps to reach an equilibrium state. Measurements must be taken
of equilibrium states to obtain good and accurate statistics.

The set of states {Xtn} is a Markov Chain. Thinking of {Xtn} as an evolving
system, (23) can be interpreted as a transition probability Wij for the system to
evolve from state Si to state Sj

(24) Wij = P (Xtn = Sj|Xtn−1 = Si)

Wij must satisfy the typical requirements for probabilities,

Wij ≥ 0,
∑
j

Wij = 1

Monte Carlo simulations produce a Markov Chain of system states at equilibrium.
We expect that the probability of our system to be in a state of equilibrium to
be high at some time down the chain. The total probability of Xtn = Sin is (23)
multiplied by the probability of the state preceding it. At time t

P (Sj, t) = P (Xtn = Sj|Xtn−1 = Si)P (Xtn−1 = Si)

Noting that the first factor is the transition probability, and taking the time de-
rivative we have a continuity equation
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(25)
dP (Sj, t)

dt
= −

∑
i

WjiP (Sj, t) +
∑
j

WijP (Si, t)

This equation shows us that the change in probability of our system being in Sj in
a Markov Chain is a balance between the total probability of moving to and away
from Sj.

Importance sampling in Monte Carlo simulations sets a requirement on (25) by con-
sidering a system in equilibrium. The Principle of Detailed Balance requires

(26) WjiPeq(Sj) = WijPeq(Si)

and the continuity equation becomes

(27)
dPeq(Sj, t)

dt
= 0

Thus, at a time t such that the system has reached equilibrium, (27) shows that
system is not evolving towards a state that is becoming more favorable. Instead,
Xtn is limited to Stn that have a non-zero transition probability. This also ensure
ergodicity. The physics that dictate a Markov Chain dynamic and the Principle
of Detailed Balance become clear in the next section.

Figure 3 shows time series data for energy and magnetization. To obtain accurate
results for thermodynamic variables, measurements must be taken from equilib-
rium states. Measurements from non-equilibrium states are outliers in the averages
of energy. This results in specific heat and susceptibility plots that do not show
a peak, noisy magnetization plots, and negative or noisy values for the Binder
cumulant. The number of steps it takes for the lattice system to reach equilibrium
is dependent on the initial state of the lattice. It is a good practice to run ther-
malization steps equal to the number of steps you intend to take measurements of.
This essentially guarantees that you are only taking measurements at equilibrium.
A sloppier approach ignores the extra thermalization steps, and instead takes the
Monte Carlo steps to be much greater than steps needed to reach equilibrium, so
nonequilbrium measurements have virtually no impact on the averages.

3.2. The Metropolis Algorithm. Now that we understand the dynamics in-
volved in our simulation, we must develop a method to achieve them. We know
that the Ising Model is composed of many 1/2-spins and that they will all align in
the broken symmetry phase or be in random alignment in the symmetric phase.
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Figure 4. Average number of accepted Metropolis moves on a 256x256 lattice.
More steps are accepted as the model becomes disordered for higher tempera-
tures. It may be possible to estimate Tc by finding the inflection point.

The intrinsic determinant of the critical temperature is the form of the Hamilton-
ian. We can thus consider a specific site on the lattice, flip its spin, and re-calculate
the Hamiltonian. A flip that decreases the Hamiltonian is a move closer to equi-
librium. At equilibrium we must form a method for numerically calculating (26).
The probability of a microstate is given by the classical Boltzmann factor and
partition function (9).

By rearranging (26) and using (9), we can write

(28)
Pi(t)

Pj(t)
=
Wji

Wij

= eβ(Ej−Ei)

Any transition probability satisfying (28) will ensure detailed balance. Simplifying
Ej − Ei to ∆E, we can make the simple choice of letting Wij be the probability
ratio, and Wji to be unity. This is the Metropolis [11] choice and is defined as

(29) Wij =

{
e−β∆E if ∆E > 0

1 if ∆E ≤ 0

which clearly satisfies (28). We implement this choice in the Metropolis Algorithm
by following the below procedure:
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(1) Randomize the lattice to form an initial state.

(2) Randomly choose a site i

(3) Calculate ∆E resulting from flipping si.

If ∆E ≤ 0, accept the flip.

If ∆E > 0, generate a random number r ∈ (0, 1). If r < e−β∆E, accept
the flip.

(4) Return to step 2 until iterations equal to the size of the lattice have been
completed

Completing the algorithm is defined as one Monte Carlo step, a non-deterministic
time scale for the dynamics of the Ising Model. The behavior of the Metropolis
algorithm for different temperatures is seen in Figure 4. More moves are accepted
as the temperature increases and the state becomes disordered, ultimately a result
of the large number of microstates that can compose a disordered state.

3.3. Fluctuations in states. No longer being in the realm of explicit solutions,
we must consider how to extract macroscopic thermodynamic variables from our
set of configurations in Monte Carlo space. We are interested in finding the phase
transition of the Ising Model by running lattice simulations at various temperatures
and determining at what temperature the transition occurs. Two thermodynamic
quantities that indicate a phase transition are the specific heat Cv and the suscep-
tibility χ. Both quantities diverge as T → Tc, see Figures ?? and ??.

At equilibrium, our simulations fluctuate [9] as they explore configurations about
the equilibrium energy. To characterize the internal energy at a given temperature,
we simply take the average energy, which can be represented as a weighted average
in terms of Boltzmann factors.

U = 〈H(µ)〉(30)

=
∑
µ

H(µ)e−βH(µ)/
∑
µ

e−βH(µ)(31)

and using the definition (5)

(32) Cv =
1

kBT 2
〈H2〉 − 〈H〉2

Following the same procedure, we also have an expression for the susceptibil-
ity
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Figure 5. Specific Heat for a 128x128 lattice. C diverges as T → Tc and is
fit well by Onsager’s solution(red) (19). The tail of the plot will approach the
explicit solution as L→∞ and as Monte Carlo

(33) χ =
1

kBT
〈M2〉 − 〈M〉2

3.4. Correlation Time and Critical Slowing Down. Once the Ising Model
reaches equilibrium, the magnetization and energy settle in to a temperature-
dependent expected value. These quantities do not stay flat, but periodically
fluctuate about these expected values (see Figure 3). To characterize this period-
icity, and thus quantify how often a state at to is correlated with a state measured
at t+ to we define a normalized autocorrelation function

(34) CA(t) =
〈A(to)A(t+ to)〉 − 〈A〉2

〈A2〉 − 〈A〉2

where A is the quantity we are interested in measuring. Because the origin of our
Monte Carlo system is stochastic and time is non-deterministic, any measurement
can be taken as the time origin. The term is then summed over all possible time
intervals of size t and averaged.

The autocorrelation function is normalized such that at t = 0 a value of 1 represents
full correlation and as t → ∞ that function decays to an uncorrelated zero. The
asymptotic behavior of (34) is exponential decay
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Figure 6. Correlation times for energy and magnetization for a 32x32 lattice.
Correlation times diverge as T → Tc, requiring more runs to attain quality sta-
tistics. τE is not equivalent to τM due to greater fluctuation of the magnetization
at high temperatures.

(35) CA(t)→ e−t/τA

This can be integrated over all t and the correlation time [5] τ is given as

(36) τA =

∫ ∞
0

CA(t)

The correlation time is a measure of many Monte Carlo steps we have to iterate
through before we produce an independent measurement. Our simulations are
not continuous, so to obtain τ we simply rewrite (36) as a discrete sum over our
simulation time. Knowing that our measurements are correlated in time, we must
include the correlation time in our error estimates. The error [9] is redefined in
terms of the typical standard deviation and τ

(37) (error)2 =
σ2

n
(1 + 2τ/∂t)

It is not immediately obvious from (36) and (34) how τ behaves as our system ap-
proaches the critical temperature. We can construct a good description of the be-
havior of τ by considering the critical dynamics we observed above Remember that
the observables susceptibility and specific heat both diverge as TC is approached,
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resulting in an observed maximum. The magnetization also has diverging behav-
ior as T → TC as our systems transitions from a ordered to disorder state. These
critical dynamics can be expressed as power laws [9].in terms of the Ising Model’s
critical exponents: those found by Onsager that define the universality class.

(38) χ = χoε
−γ, CV = CV oε

−α, M = Moε
β

where ε is the reduced temperature |1−T/TC |. These expression represent asymp-
totic behavior of the observables only as ε→ 0. We can now consider (34) depen-
dency on temperature. As the critical temperature is approached, our observable
A diverges and so does τA. Figure ?? shows the divergence of the correlation time
for the energy and magnetization. This is the problem of critical slowing down.
To ensure that we can find the peaks of the susceptibility and specific heat with
statistical accuracy, we must go back to our algorithm and consider how we might
stop the diverging behavior of τ and thus reduce the Monte Carlo error (37).

3.5. The Wolff Cluster Algorithm. To battle the problem of critical slowing
down, we turn to a more powerful algorithm. The Wolff Cluster Algorithm [13]
extends the approach of Metropolis to multiple spins. Instead of considering one
spin for a flip, the Wolff Algorithm considers a cluster. The cluster is formed
by choosing a site as the cluster seed. Bonds are formed between it and nearest
neighbors by a probability that satisfies detailed balance. One of the nearest
neighbors becomes the seed and the cluster continues to be built until all possible
bonds have been built. The whole cluster is then flipped.

The Wolff algorithm significantly decreases the correlation between successive
states by its dramatic construction of a new state. Thus, at least for the Ising
Model, the Wolff Algorithm completely vanquishes the problem of critical slowing
down. The Algorithm goes as follows

(1) Randomly choose a site i to be the cluster seed

(2) Add bonds to all nearest neighbors j with probability P = 1− eJβδsisj

(3) If all bonds have been tried, pick a nearest neighbor site to be the new seed

(4) Continue steps 2-3 until no more bonds are created

(5) Flip the cluster

(6) Repeat from 1

Ergodicity is ensured in the Wolff Algorithm because there is a non-zero proba-
bility that the cluster consists of only one spin and a flip is always made. The
autocorrelation time is modified [13] as

waloinaz
Sticky Note
it's not clear that tau diverges just because observable A diverges.  In fact, with a different algorithm, the same divergence in A need not come with a divergence in tau

waloinaz
Sticky Note
maybe just different
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(39) τχ = τχm〈c〉L−2

where m is the number of updates between each measurement and c is cluster size.
Away from the phase transition for T > Tc the cluster size is large as the system
is in an ordered state. But at these temperatures, the correlation time is small
anyway, so the Wolff correlation time is similar to the Metropolis. However, as the
T → Tc, the cluster size becomes smaller relative to L, and thus the correlation
time is significantly reduced.

3.6. To the Thermodynamic Limit: Finite Size Scaling. We have quickly
found the critical temperature of the two-dimensional Ising Model with fairly in-
tuitive algorithms while accumulating key thermodynamic averages. But we have
not yet reached our goal. As we simulate the Ising Model on lattices of different
size, the observed critical temperature shifts. To find the critical temperature at
the thermodynamic limit as N →∞ we need a method to qualitatively model the
systematic dependence of critical temperature with lattice size. One such method
is finite size scaling.

The behavior of our thermodynamic observables near the critical temperature is
described by (38). To recast the critical behavior in terms of a length to relate to
the lattice size, we define the correlation length

(40) ξ = ξoε
−ν as ε→ 0

which is similar to the correlation time: expressing how similar the state of the
Ising Model is across the lattice. (40) features the same divergence as the ther-
modynamic variables. we can rewrite the critical behavior of the susceptibility in
terms of the correlation length

χ = ξγ/ν

The behavior of the susceptibility runs into a block for finite lattices because the
similar critical behavior of the correlation length cannot exceed the size of the
lattice L. As we increase L in the simulations, the divergent of behavior of ξ also
grows. To obtain the true susceptibility at the thermodynamic limit, we need to
introduce a scaling function to the above expression for χ.

χ = ξγ/νχo(L/ξ)
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Figure 7. Susceptibility for a lattices of varying sizes. The susceptibility peaks
shift closer to Tc as L→∞

The above expression has an unnecessary double dependence on L. This can be
eliminated by rewriting it in terms of the reduced temperature ε = (T − Tc)/Tc,
giving us an explicit dependence on T. We then have for the susceptibility and
specific heat

χ = Lγ/νχo(εL1/ν),(41a)

C = Lα/νCo(εL1/ν)(41b)

From these scaling forms, we can consider plotting χL−γ/ν against εL1/ν for various
lattice sizes. Without a priori knowledge of the critical exponents γ and ν, we
must fit for those along with Tc in ε. Once we have found a good fit for these
three parameters, the fitted susceptibility curves should all merge, thus giving us
Tc. This method known as data collapse can naively be done by eye or rigorously
by minimizing statistical quantities of the fit. But there is a more well reasoned
method.

We have previously found the peak of the susceptibility per lattice size. The peaks
of (41a) occur at the same point, when χo is maximum. This point Tc(L) is defined
[1] asymptotically as

(42) Tc(L) = Tc(1 + x∗tL
−1/ν), x∗t = tL1/ν

where x∗t is the location of the peak of the scaling function and Tc is the critical
temperature in the thermodynamic limit. The above equation holds only for large
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Figure 8. Fourth order cumulant for a 128x128 lattice. The intersection of all
four plots is difficult to locate visually and may not be an accurate estimate of
Tc for small lattice sizes. U4 → 2/3 for T < Tc and U4 → 0 for T > Tc. Negative
values are a result of noise. The plot can be resolved about the temperature at
which U4 diverges to obtain a better estimate of the intersection point.

lattices and temperatures close to Tc. For smaller lattices, further corrections
must be taken into account. Thermodynamic variables will be scaled by a power-
law with an exponent −w that is unique for each variable. For example, the
magnetization at Tc would scale with lattice size like L−β/ν(1 + cL−w).

The temperatures at which we find our thermodynamic maxima per lattice size
varies proportionally from Tc by L1/ν , as seen in (42). Power-law corrections to
asymptotic behavior take the form a1L

−θ/ν + ... and b1L
−1/ν + ... [1]. However,

taking into consideration all of these correction terms leads too many parameters
to be successfully fit. We can simplify the corrections by using only one term
L−w with the hopes that our lattice sizes are large enough to exhibit asymptotic
behavior and any remaining corrections can be well approximated by the single
term. The new estimate [4] for Tc(L) becomes

(43) Tc(L) = Tc + λ′L−1/ν(1 + b′L−w)

The above equation has four fitting parameters, introducing a possible difficulty
in the fitting procedure. It is important to note that λ′ is dependent on the
thermodynamic variable chosen to locate Tc(L). Each thermodynamic variable has
a different scaling function, so both Tc(L) and λ′ will differ between susceptibility
and specific heat. To obtain a good fit from (43) it is important to obtain accurate
values of Tc(L) and ν. Remember for the two-dimensional Ising Model, we know
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the value of ν from Onsager’s explicit solution. However, we can obtain a value of
ν by examining another variable.

An estimate of ν can be extracted from the fourth-order magnetization cumulant
defined as

(44) U4 = 1− 〈m4〉
3〈m2〉2

The maximum of the slope of the cumulant scales like L1/ν . This occurs near Tc
and be expressed by first introducing the quantity K = J/kBT and looking at the
derivative of U4

(45)
∂U4

∂K
|max = aL1/ν(1 + bL−w)

But the fourth order cumulant can also be used as a more direct method to finding
Tc in the thermodynamic limit. If we plot U4 for many different lattice sizes, we
will find that they will intersect at a given temperature which turns out to be
Tc [3]. However, this is again valid only for large lattices. If smaller lattices are
included, finite-size correction terms will obfuscate the shared intersection point
(see Figure 8).

4. Physical Applications and Sibling Models

The Ising model is an abstraction of a magnetic behavior. And yet despite its
simplicity, it is able to capture with impressive accuracy the physics of phase
transitions. This is because a phase transition is an emergent phenomena that
results from the interacting behavior of each spin: the microscopic physics of
atoms can be simplified and reduced. The Ising model can be adapted to other
physical systems with small changes to the Hamiltonian along with a different
interpretation. Accompanying the changed Hamiltonian, subtle and non-intuitive
changes in the phases and the transition emerge. One must reconsider how to
interpret the simulation, quantify the phase transition, and incorporate time-scale
behavior.

4.1. Lattice Gases. The lattice gas is the simplest adaptation of the Ising model
requiring only a reinterpretation of the model. A lattice gas describes a gas with a
finite number Na of particles on a discrete NxN lattice such that Na < N . Each
particle takes on a discrete position on the lattice, with only one particle fitting
at each site. Each site is either occupied or not, corresponding to an Ising spin
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up or down. The particles of the gas only interact with nearest neighbor. The
Ising magnetization maps to the specific volume, and the difference between the
Ising free energy per spin and magnetic field map to the pressure.[10] Because of
the number of particles is conserved, the Metropolis algorithm has to modified
to utilize spin-exchange dynamics in place of spin flips. The lattice gas could
alternatively be interpreted as a binary alloy, where spin up are particle of type A
and spin down are particles of type B.

4.2. Monte Carlo on Spin Glasses. Spin glasses are magnetic systems with
spin interactions that compete on the nearest neighbor level to evolve towards an
ordered state. Competing interactions are due to frozen-in disorder and prevent
long-range order from emerging. A phase transition occurs for spin glasses at a
freezing temperature where a redefined order manifests in which spins are aligned
in random directions. Many materials share the characteristic phenomena of spin
glasses when they are randomly diluted or are noncrystalline. The Ising model is
used to model spin glasses for Monte Carlo simulations. The Hamiltonian with
non-zero magnetic field (2) is used, but the coupling strength–now called exchange
constant-is distributed on a Gaussian by the Edwards-Anderson [2] form

(46) P (Jij) =
1√

2πσ2
J

e
− N

2σ2
J

(Jij−µJ/N)2

Anitferromagnetic and ferromagnetic exchange constants occur with equal prob-
ability, resulting in the characteristic frustrated interactions. This gives rise to a
time-dependent feature when the spin glass is cooled below Tf while a magnetic
field is on. The magnetic field is then switched off. The magnetization of the
spin glass was as would be expected for a paramagnetic material. But once the
magnetic field is gone and T < Tf , the magnetization drops to a non-zero value
and non-exponentially decays toward zero.

4.3. n-Vector Model. The n-vector model is an expansion on the Ising model
where spins are allowed to point in any direction within the dimensionality of
the model. The basis components of the spin vector are coupled. The Hamilton-
ian

(47) H = −J
∑
〈nn〉

(SiṠj)

Where Si is an n-dimensional unit spin vector. The Ising model is the special
case where n = 1; the n = 2, n = 3, and n = 4 cases are known as the XY,
Heisenberg, and Higgs Toy models respectively. To simulate the model in n > 1,
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one or more spin angles are randomly chosen for each site in an adapted Metropolis
algorithm.

Long range order does not appear for low temperatures, but a phase is defined by
the presence of topological excitations. These vortex-antivortex pairs unbind at
the transition temperature TKT [9].

4.4. q-state Potts Model. The q-state Potts Model [9] is yet another extension
of the Ising Model. Instead of having only two-discrete states for spin, there are
q possible states. Coupling occurs only for spins in the same state, represented in
the Hamiltonian

(48) H = −J
∑
i,j

δsisj

where si = 1, 2, ..., q. The Ising model is the special case of q = 2.

5. Summary

The Ising model has been an adequate introduction to Monte Carlo techniques,
programming skills, and data analysis. The Markov theory behind Monte Carlo
has been presented, giving a good understanding of why this simulation technique
is so powerful. Multiple avenues of finding the critical temperature have been pre-
sented. These will be used in our experimentation with φ4

2 theory and rigorous
error analysis will be introduced. The Ising model provides a comfortable foun-
dation for learning and experimenting with numerical modeling techniques and
provides many rich models that have spawned from it.
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//
//  Ising_mine.cpp
//  
//
//  Created by Tyler Ogden on 12/15/12.
//  Copyright (c) 2013 Hampshire College. All rights reserved.
//

#include <iostream>
#include <cstdlib>
#include <cstddef>
#include <cmath>
#include <algorithm>
#include <trng/mt19937_64.hpp>
#include <trng/uniform_int_dist.hpp>
#include <trng/uniform01_dist.hpp>
#include <vector>
#include <fstream>

using std::vector;      using std::cout;
using std::endl;

//spin lattice of 16x16
const size_t L = 128;
int iL = int(L);
int N = iL*iL;
static int spin[L][L];
static double temperatureCritical = 2/log(1+sqrt(2));
double *cE, *cM, *Etseries, *Mtseries;
bool **ClusterSpin;

// Nearest-neighbour index array
static int nnup[L],nndn[L];

//time series data structure
struct TimeSeriesData {
    int magnetization, energy;
};
struct ThermalQuant{
    double emean, e2mean, mmean, m2mean, m4mean, mabsmean, susceptibility, 

specificHeat, U4, \
    tauE, tauM;
};

trng::mt19937_64 rng;

//Metropilis Alogorithm with random site choice
void Metropolis_rand(int& e, int& aM, int& m, const int& l,vector<float>& w, 

const int& cc){
    int x,y,dE;
    trng::uniform_int_dist uniform(0,l);
    trng::uniform01_dist<> uni;
    
    
    for (int i=0; i<N; i++) {
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        x = uniform(rng);
        y = uniform(rng);
        dE = 2*spin[x][y]*(spin[x][nnup[y]] +spin[x][nndn[y]]
                           + spin[nnup[x]][y] + spin[nndn[x]][y]);
        //double mag_sum = b(spin[x][y]);
        
        if (dE <= 0 || uni(rng) < w[dE]) {
            spin[x][y] = -1 * spin[x][y];
            e += dE;    
            aM++;
            m += 2*spin[x][y];  //factor of 2 for change and cancel
        }
    }
    
    Mtseries[cc] = m;
    Etseries[cc] = e;
    
}

//function to calculate thermodynamic quantitites
ThermalQuant calculate(const vector<TimeSeriesData>& ts, const int& s,const long& 

step, const double& t){
    ThermalQuant output;
    double esum = 0 , e2sum =0 , msum =0 , m2sum =0 , mabssum =0 , m4sum =0, 

Enorm =0, Mnorm = 0, mm=0, ee=0;
    int ncorr;
    bool checkE = false, checkM = false;
    
    //get sums
    for (vector<TimeSeriesData>::const_iterator iter = ts.begin(); iter != ts.end

(); iter++){
        mm = (*iter).magnetization;
        ee = (*iter).energy;
        esum += ee;
        e2sum += (ee*ee);
        msum += mm;
        m2sum += fabs(mm*mm);
        mabssum += fabs(mm);
        m4sum += fabs(mm*mm*mm*mm);
    }
    output.emean = esum/(step);
    output.e2mean = e2sum/(step);
    output.mmean = msum/step;
    output.m2mean = m2sum/step;
    output.mabsmean = mabssum/step;
    output.m4mean = m4sum/step;
    output.susceptibility = (1/t)*(output.m2mean - output.mabsmean*output.

mabsmean);
    output.susceptibility /= N;
    output.specificHeat = (1/(t*t))*(output.e2mean - output.emean*output.emean);
    output.specificHeat /= N;
    output.U4 = output.m4mean;
    output.U4 /= output.m2mean*output.m2mean;
    output.U4 /= -3;
    output.U4 += 1;
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    //calculate correlation times
    Enorm = output.e2mean - output.emean*output.emean;
    Mnorm = output.m2mean - output.mabsmean*output.mabsmean;
    
    //build double length time series for autocorellation calculation
    for (int i =0; i < step;i++){
        Etseries[step + i] = Etseries[i];
        Mtseries[step + i] = Mtseries[i];
    }
    
    //calculate autocorrelation function
    for (int t = 1; t < step; t++) {
        ncorr = 0;
        for (int i = 0; i < step; i++) {
            cE[t] += Etseries[i]*Etseries[i+t];
            cM[t] += fabs(Mtseries[i]*Mtseries[i+t]);
            ++ncorr;
        }
        cE[t] /= ncorr;
        cM[t] /= ncorr;
        cE[t] -= output.emean*output.emean;
        cM[t] -= output.mabsmean*output.mabsmean;
        cE[t] /= Enorm;
        cM[t] /= Mnorm;
        
        
        //add to sum if function is greater than zero
        if (cE[t] > 0 && !checkE){
            output.tauE += cE[t];
        }
        else{
            checkE = true;
        }
        
        if (cM[t] > 0 && !checkM) {
            output.tauM += cM[t];
            
        }
        else {
            checkM = true;
        }
        //break loop when both functions are negative
        if (checkE && checkM) {
            break;
        }
    }
    return output;  
}

//construct initial state of lattice
void initialize(const int& in, const size_t& l, const int& n, int& e, int& m, 

const long& step){
    trng::uniform_int_dist uni(0,2);
    e = 0;
    m = 0;
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    int dE;
    
    ClusterSpin = new bool* [L];
    for (int i = 0; i < L; i++) {
        ClusterSpin[i] = new bool [L];
    }
    
    cE = new double [2*step + 1];
    cM = new double [2*step + 1];
    Etseries = new double [2*step];
    Mtseries = new double [2*step];
    for (int i = 0; i <= 2*step; i++) {
        cE[i]=0;
        cM[i]=0;
        Mtseries[i]=0;
        Etseries[i]=0;
    }
    
    if (in == 1) {
        for(int x=0;x<l;x++) for(int y=0;y<l;y++) spin[x][y] = 1;
        m = n;
        e = -2*n;
    }
    else if (in == -1){
        for(int x=0;x<L;x++) for(int y=0;y<L;y++) spin[x][y] = -1;
        m = -1*n;
        e = 2*n;
    }
    else {
        for(int x=0;x<L;x++) for(int y=0;y<L;y++){
            if (uni(rng) == 0){
                spin[x][y] = -1;
                --m;
            }
            else{
                spin[x][y] = 1;
                ++m;
            }
        }
            for(int x=0;x<L;x++) for(int y=0;y<L;y++){
                dE = 2*spin[x][y]*(spin[x][nnup[y]] +spin[x][nndn[y]]
                                   + spin[nnup[x]][y] + spin[nndn[x]][y]);
                e += dE;
            }
    }
    
}

//outputs lattice file
void snapshot(const double& m, const size_t& l){
    char fname[128];
    sprintf(fname, "snapshot_T%f.dat",m);
    
    std::ofstream snap(fname);
    
    for (int i =0; i < l; i++) {
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        for (int j=0; j < l; j++) {
            snap << spin[i][j] << "\t";
        }
        snap << endl;
    }
    snap.close();
}

//Wolff Cluster Algorithm
//pick random cluster seed; attach bonds to like-spin sites with probability p = 

1 - exp[-2*spin(c)*spin(nn)]
int Wolff_simple(const size_t& l, double e){
    int x,y;
    double cluster = 0;
    double core;
    trng::uniform_int_dist uniform(0,l);
    
    void tryBondAdd (int& aa, int& bb, double& spn, double cre);
    void growCluster (int& a, int& b, double& cre);
    
    
    //initialize ClusterSpin value
    for (int i = 0; i < l; i++) {
        for (int j = 0; j<l; j++) {
            ClusterSpin[i][j] = false;
        }
    }
    
    //get random lattice site cluster core
    x = uniform(rng);
    y = uniform(rng);
    core = spin[x][y];
    
    growCluster(x,y,core);
    
    for (int i = 0; i < l; i++) {
        for (int j = 0; j<l; j++) {
            if (ClusterSpin[i][j] == true) {
                cluster++;
            }
        }
    }
    
    
    
    return(cluster);
}

void tryBondAdd (int& aa, int& bb, double& spn, double cre){
    double p;
    trng::uniform01_dist<> uni;
    
    void growCluster (int& a, int& b, double& cre);
    
    if (cre*spn >= 0){
        p = (1-exp(-2*cre*spn));
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        if (uni(rng) < p){
            cre = spn;
            growCluster(aa, bb, cre);
        }
    }
}

void growCluster (int& a, int& b, double& cre){
    double nbor;
    ClusterSpin[a][b] = true;
    spin[a][b] = -1*spin[a][b];
    
    if (!ClusterSpin[nnup[a]][b]) {
        nbor = spin[nnup[a]][b];
        tryBondAdd(nnup[a], b, nbor, cre);
    }
    
    if (!ClusterSpin[nndn[a]][b]) {
        nbor = spin[nndn[a]][b];
        tryBondAdd(nndn[a], b, nbor, cre);
    }
    
    if (!ClusterSpin[a][nnup[b]]) {
        nbor = spin[a][nnup[b]];
        tryBondAdd(a, nnup[b], nbor, cre);
    }
    
    if (!ClusterSpin[a][nndn[b]]) {
        nbor = spin[a][nndn[b]];
        tryBondAdd(a, nndn[b], nbor, cre);
    }
}

int main(int argc, char** argv)
{
    long mcs;
    int acceptedMoves,E,M,count;
    double temperature = temperatureCritical;
    vector<float> boltz(9);
    vector<int> Etseries, Mtseries;
    char fname[200];
    std::ofstream outfile;
    ThermalQuant thermdata;
    //take input
    if (argc == 3){
        mcs = atol(argv[1]);
        temperature = atof(argv[2]);
    }
    else{
        cout << "Wrong input number. QUITTING....." << endl;
        return(1);
    }
    vector<TimeSeriesData> tseries(mcs);

    // fill up the nearest neighbor array 
    for (int i=0; i<L; i++) {
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        nnup[i] = (i+1) % L;    
        nndn[i] = (i-1+L) % L;
    }
    
    //possible Boltzmann factors for 2-D Ising
    boltz[4] = exp(-4/temperature);
    boltz[8] = exp(-8/temperature);
    

    
    //Initial spin microstate - all spins up
    initialize(0, L, N, E, M,mcs);
    count =0;
    
    sprintf(fname,"tseries.dat");
    outfile.open(fname, std::ios::out | std::ios::app);
    
    //Run Metropolis Algorithm
    for (vector<TimeSeriesData>::iterator iter = tseries.begin(); iter != tseries

.end(); iter++) {
        count++;
        (*iter).energy = E;
        (*iter).magnetization = M;
        
        outfile << E << "\t" << M << endl;
        
        //*iter.microstate = spin;
        Metropolis_rand(E, acceptedMoves, M, iL, boltz,count);
    } 
    
    //calculate averages, and thermodynamic quantities
    thermdata = calculate(tseries, N, mcs, temperature);
    
    
   
    
    /*outfile << temperature << std::setprecision(9) << "\t" << thermdata.emean 

<< "\t" << thermdata.mabsmean << "\t" << thermdata.susceptibility <<"\t"
    << thermdata.specificHeat << "\t" << thermdata.Uls
     4 << "\t" << thermdata.tauE << "\t" << thermdata.tauM << "\t" << 

acceptedMoves << endl;*/
    
    outfile.close();
    
    cout << thermdata.m4mean << "\t" << (thermdata.m2mean)*(thermdata.m2mean) << 

"\t" << thermdata.U4 << endl;

    //snapshot(temperature,L);
    
}




